
Enumeration and shape of 1324-avoiding permutations

A permutation π ∈ Sn is said to avoid a pattern σ ∈ Sk if there is no increasing subsequence

1 ≤ i1 < · · · < ik ≤ n such that the subsequence (πi1 , . . . , πik) has the same order type as σ (meaning

πir < πis iff σr < σs). In particular, π ∈ Sn is 1324-avoiding if there is no 1 ≤ a < b < c < d ≤ n

such that πa < πc < πb < πd. For π ∈ Sn, its permutation matrix M(π) is the n × n matrix with

M(i, j) = 1 if πi = j and Zero otherwise. Then π avoids 1324 iff M(π) has no 4× 4 minor (choose

any four rows and any four columns) equal to M(1324). Let An denote the set of 1324-avoiding

permutations of length n and let Nn := Nn(1324) := |An| count the number of 1324-avoiding

permutations of length n. The Marcus-Tardos theorem affirms the existence of a finite limit

c := c1324 := lim
n→∞

Nn(1324)1/n .

Submultiplicativity immediately implies that Nn(1324)1/n ≤ c for all n. Best current bounds are

9.81 < c < 13.74 , the lower bound due to Bevan (2015) and the upper to Bona (2015). These

improved upon bounds of 9.35 (Albert et al, 2006) and 7 + 4
√

3 ≈ 13.93 (Bona, 2012) respectively.

Problem 1. Improve these bounds.

Problem 2. Shown that Nn+1/Nn converges to c.

For π ∈ An, let L(π) denote the length of the longest initial segment of π that avoids 132. There

is a simple bijection from pairs (π,m) with π ∈ An and 0 ≤ m ≤ L(π) to An+1 obtained by inserting

the element n + 1 into π in position m + 1. Let µn denote the uniform measure on An and let En
denote expectation with respect to µn. Then Problem 2 is equivalent to showing that En(L+1)→ c.

Let M(n) := EnM denote the average permutation matrix over An. The left-hand figure shows

an MCMC simulation of M(350). The only known shape result (Poh, 2015) is the exponential region

of decay depicted in black in the figure on the right.

Problem 3. Does all the mass in M(n) converge to the diagonal as n→∞?

Problem 4. Let Rn be the least value such that
∑n/2+R
k=n/2−RM(n)n/2,k ≥ 1/2. In other words, Rn

is the µn-median absolute value of πn/2 − n/2. How does Rn scale with n? This is a refinement of

the previous problem, which asks whether Rn = o(n).
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For π ∈ A2n, let π|n denote the subsequence of π consisting of the values less than or equal to

n. Thus, necessarily, π|n ∈ An.

Problem 5. What is the typical value of E2nL(π|n)?

On the one hand, we know E2nL converges to c at least in as a logarithmic cesaro sense even if

Problem 2 fails. On the other hand, the data makes it appear that E2nL(π|n) may be of order n (if

Problem 3 fails) and in any case seems extremely unlikely to be O(1).

The next figure shows a sample permutation in A100 (red) against the intensity plot of M(100).

It is known (Claesson et al., 2012) that permutations in An split into two subsequences, one avoiding

132 and one avoiding 213. The lower arc of the red permutation avoids 132 and the upper arc avoids

213. The set of 132-avoiding permutations is counted by Catalan numbers and its shape is well

understood (Miner and Pak, 2014).

Problem 6. Can one characterize the distribution of the 132-avoiding permutation obtained by

taking the lower arc of a typical element of An?

The previous figure was generated by an MCMC algorithm which attempts to switch the values

of π(i) and π(j), rejecting if this forms a 1324 pattern to occur. The Markov chain is doubly

stochastic, hence uniform on An. The chain was run until various functionals appeared to be

roughly in stationarity.

Problem 7. What is the mixing time of the Metropolis-Hastings chain on An moving by random

transpositions?
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Deletion channels

A deletion channel is a map whose input is a string of message bits and whose output is a string

with some of the bits deleted, but no indication as to which. Formally, suppose {Xn} are a string of

message bits, assumed to be IID Bernoulli(1/2), and let {Un} be independent uniform [0, 1] random

variables which we use to keep or retain each bit according to a tunable deletion parameter p. The

nth retained bit is Zn := Xτn where τn = inf{k : Sk ≥ n} and Sk are the partial sums of retentions

Sk :=
∑k
i=1 1Ui≤1−p}.

For N ≥ 1, let XN := (X1, . . . , XN ) be the first N bits of message and let ZN := (Z1, . . . , ZSN
)

be the string of bits received when the first N bits are sent. The main problem is to determine the

rate at which information is transmitted through the channel. The amount of information that ZN

reveals about XN is hN := h(XN ) + h(ZN )− h(ZN ,XN ).

Problem 1. Determine the transmission rate h := h(p) := lim
N→∞

hN
N

.

This problem and related ones are discussed at length by Mitzenmacher (Probability Surveys,

2009). This problem statement could just be a pointer to that reference. However, I will try to

summarize what I think are the most interesting sub-problems. One is to improve the upper and

lower bounds. The best known upper bounds are roughly h(p) ≤ (4/5)(1 − p) (see page 20 of

Mitzenmacher, who refers to Diggavi et al. and Feratoni et al.). The best known lower bound

(Drinea and Mitzenmacher) is h(p) ≥ (1− p)/9; this is notable because it shows a transmission rate

proportional to the retention rate even when this is near zero, a fact which is not at all obvious.

Problem 2. Improve either bound.

Of greater interest, perhaps, is the question of how to extract what information is there. In

principle, this is the same as the question of computing the distribution of XN given ZN . The case

p = 1/2 allows for a particularly simple version of this problem. Because XN is uniform on all

words of length 2N and the deletion is uniform over all substrings, this boils down to computing the

distribution of #S(XN ,ZN ), the number of ways in which ZN appears as a substring of XN . Ander

Holroyd and I have some partial results related to the following problem – ask if interested.

Problem 3. Characterize the distribution of #S(XN ,ZN ) given ZN = W , for typical words W .

Existing lower bounds for general p involve constructive extraction of information and sometimes

construction of codebooks. One coding schemem that appears in Mitzenmacher’s survey is Poisson

repetition: the message string is obtained from an initial code word by replaing each bit by a string

of consecutive bits equal to it, with block lengths chosen to be IID Poissons of some mean λ.

Problem 4 (Mitzenmacher, 2009). Find an efficient encoding and decoding algorithm for a Poisson-

repeat channel with parameter, say, 1.
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